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0. Introduction — the linguistic problem

Several practical problems concerning phonology could be approached
much more effectively by using & rigorous mathematical model. Quantifica-
tion of bilingnal interference and eventnal phonological convergence neces-
sitated the search for such models and some findings were reported in the
first author’s earlier papers (1968, 1969a, 1969b).

The present model is based on a more powerful mathematical theory and
should be applicable to 2 much wider range of phonological problems. The
following test case from diachronic phonology was singled ouf: the com-
monness as to geographical distribution and diachronic stability of the five
vowel “clagsical” triangle, consisting of /i, e, a, 0, u/ as in Spanish and Modern
Greek. The striking frequency of this vocalic type has been pointed out by
many linguists, including Trubetzkoy (1929; 1949: 106, 116, 117), Hockett
(1958), Viggo Brendal (1936) and others.

The stability of this type can be attested too by Modern Greek in which it
has remained unaltered since, roughly, 900 A. D. Actually, it is most likely
extreme stability which accounts for the frequent occurrence of this pattern
among the most diverse genetic groups. If one considers a phonological pattern
as a system, there must be systemic characteristics responsible for stability,
which in turn are discoverable by systems analytic methods. Doubtless, these
characteristios are due to the nature of the human speech production-percep-
tion mechanism in which lies the final answer to our problem. But first we
must find the systemic constraints in the sound pattern and then turn to
psychology or neurophysiology for a natural explanation of the constraints.

1 An original version of this paper was read at the Second Internationsl Congress of
Applied Linguisties, Cambridge, England, Beptember 1969.
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. The random process

The model employed was the following:

Firgt, the five vowel pattern was rendered into Jakobsonian distinctive
features. (Actually, any other distinctive features can be adopted, binary or
not and this has little effect on ¢hoice of model). Next, vowel pattern ’ individual
vowels and distinctive features were expressed as a stochastic pr::mess.

. A random (stochastic) process is a collection of numerically valued fune-
tions of a parameter f, each of which is assigned to points w; of a probahility
model (2, p, B).

When the parameter f assumes only a finite number of points, the process
is called & finite discrete parameter process. At each point f; of the parameter
J we have a collection of numbers, each number corresponding to each func-
tion of the process and thus each number coming from some @y e 2. We thus
have a random variable at each f; of the parameter f. If the range of all the
random variables is a finite set of points, the process is called a finite range
random. process.

Here we consider only finite range, discrete parameter random processes
Such random processes are completely specified probabilistically by the juin1;

probability mass function of all the random variables at each fi of the para-
meter f.

2. Adaptation of the model

| Next, the adaptation of the stochastic process to the phonological system
18 outhned: We consider a vowel pattern consisting of individuals v,, v,, ... v
{aj,t' first approximation equiprobable), which are completely slzlléciﬁaéd b;
giving their values (+, —, or 0) on a set of distinctive features bl ety

In :Jther words the vocalic pattern is the ahstract space a.nc?l tr; each'
vowel is assigned & realization, which is & function of a “distinctive feature
parameter”. The following diagram illustrates the idea-
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Fig. 1. Illustration of & stochastic Process representing & phonological system
(hypothetical)
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This says that vowels:

v, = {[ +dist. feat. 1], [0 dist. feat. 2], [—dist. feat. 3]}

v,= {[0 dist. feat. 1], [+dist. feat. 2] ...}

etc.

The process is now a collection of » random variables (x,;, x;, ... Xp)eachone
defined at f,, f,, ... fy. Each random variable represents a distinctive feature.

A complete description of the process is given when the joint probability
distribution function of these random variables is specified:

P (X1, X3, ..o Xn) (1)

There are many partial deseriptions, all interesting, some more interesting
than others.

1) Marginal p.d.f.’s of each random wvariable:

p(x1), p(x)...D(%a) (2)
2) Joint probabilities of random variables taken two at a time:
P {Xy. X3}, P (X, Xg) ... P (X5, Xn)
p (X3, X3) ... P (Xy, Xn) {3)

P {xn“l! xﬂ)
3} Joint probabilities taken three at a time:

e.g. P (X1, X3, Xg), --- | (4)
4) Conditional probability distribution functions of many types:
a) p (X1/xy) i. e. given x;, what is the probability that it will
co-occur with ;.
b} p (xi/x;, Xx)  ete. (5)

All of the above are specifiable by knowing (1}.
Furthermore, moments can algo be obtained in the established procedure,

3. Some possible uses of the model

Having now described sound patterns in such terms we can perform many
operations which in traditional phonology are difficult or impossible. For
instance, we can compare two, or many more patterns and measure their
similarity (conversely distance) very precisely. We ean thus find the mathema-
tical (systems) properties of wvarious phonological types. In a previous paper
(1969a), a type of conditional probabilities for distinctive features was caleul-
ated for several Balkan vocalic systems and the resulting matrices cross
correlated, then factor analysed to establish grouping. We can study the
informational properties of a system diachronically and see how it changes
and how exactly its various stages relate to each other. Or, as in the present
model we can look into the mathematical properties which characterize
diachronically stable systems.

Here the entropy of the random process was examined. This measures
roughly informational effictency of a given system. It was assumed that stable
systems should display extremal value entropies. As a test case, the Latin
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pattern (without the length feature) and the Modern (reek pattern were
analysed by eventually taking into consideration frequencies of occurrence
for each wvowel.

4. Definition of entropy

Consider a discrete random variable X with range x,, x,, ... X5 with pro-
bability density (or mass} function (p.d.f.) p (xi). The entropy of X
given by:

n 1 n ;
H(X)=YpE)ln———=—73 p(x):In p (x) {6)
1=1 P {(x1) =1

where In x is logarithm to base 2%,

The interpretation of H(X) is average information (if outcomes of X, x
are observed) or average uncertainty about X (if outcomes are not observed).
However, some other interpretations can also be wvalid, based on some of
the properties of this functional H(X), and these will be discussed later,

Consider now the situation when we deal with an n-dimensional random
variable model (x,, X,, ... x5} which is what our phonological process is. In
this case we have various kinds of entropies which can be defined depending
on which p.d.f’s one uses ((1), {2) or (3) etc.), all of which have interesting
interpretations for our model.

The most general one is of course the entropy of the entire model i.e.

H(X,, X,. ... Xn):iz: p (X1, Xy, ...X0) In p (%1, ... Xn) (7)
JE...IL
m I In m
where Y means Y- -Yy-Y ...}
ijk..n i=1j=1%k=1 n=1

in the above notation each random variable is discrete with values (0, 1, 2, ...m)
and there are » random wvariables,

One may also define higher order of Entropies using the other p.d.f.’s
defined by (2), (3) ete. All of these yield interpretations for cur model, in fact
they probably have more than the overall entropy (5) as we will discuss below,
when we apply it to our language model.

5, Appliestion to our model (zeri:; order Entrﬂpies)]

‘We now apply the above concepts to our phonological model. The entropies
obtained are called *‘zerc order” entropies since the model i3 the simplest
possible, 1.e. since it does not take into account other features such as frequency
of vowels, universality of the vowel pattern, etc.

In order to illustrate the situation we also present an example, simultane-
ously with the development.

Consider the language called L with 8 vowels v, v,, v, and three features
f] ’ fzs fa %

? p(x)is P {X,) now given so as to show disereteness of the medel.
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Assume further that each vowel has the values on f;, f,, {5 a8 shown on
Figure 2:

v g {f) :} 4 o i
1 ¥ -1 ;] i‘2 fﬂ* ™
+1
v, g, (B 0 4 G—* -t > Gl
2 "1 i'l f? fa
-1 -
US QU () 0 ’3-"‘—‘ * gl
. -1 1

Fig. 2. A random process representing a gound pattern

The joint p.d.f. of the random variables x;, X,, X5 18 gspecified as follows
(vowels are assumed equiprobable):
p (%1, ¥, Xg)= P (1,0, —1)=1/3
P(]-:O!]') = 13 {8)
p{0,1, —1)= 1/3
all other combinations of values have probability zero
where p (1, 0, —1) means probability that x,=1, X;=0 and x,—=—1.
The above specification is sufficient in order to find the overall entropy of
the process by applying expression (7). Here it is very simply:

1 3 1
H (x;, Xs, X3)= Elﬂ3+*§1ﬂ 3—]—§ln 3) (9)
= |n 3=1.585

gince the summation is very simple. In this cage the total entropy per random
variable is:

H (x,, xq, x;) 1.585
> -

1t should be noted that the total entropy (9) is equal to the entropy of
the vowel structure of our system since there is a one to one mapping between
the vowels and the realization of our joint model. Thus, the interpretation of
{9) is hoth total entropy of the feature process and entropy of the vowels.
However, the value (10) is total entropy per feature, that is, & different concept,
gince it gives an idea of the average uncertainty about features not vowels.

Since it is our intent to make statements about features and not vowels,
the partial descriptions and their entropies take on a useful form., '

Let us define and compute the marginal entropies of each feature. To this
purpose we need the marginal p.d.f’s of each feature. They are:

—0.5283 (10)

g ftydla Anglica wol. 8
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P{x) =(p(l) =2/3
[p (—1) ==
p0) =1/3
P(xy) =(p(l) =1/3
[P (—1)=0 (11)
p(0) =23
p(xs) =(p{l) =1/3
{P (—1)=2/3
_ p(0) =0
The entropies of each feature are:
2.2 1.1
Hix = —(3- lng —[——é— IHE) (12)
2 3 1
:EIHE —F_EIH 3 = 0,918

and the same value is also for H (x,) and H (x,) in language L. The interpreta-
tion of these entropies iz as average uncertainty of each feature. It is not the
same a8 total entropy per feature [expression (10)], since in that case the features
were taken jointly whereas here, they are taken individually.
_ I*:‘ilfmll}r, we define entropies of random wvariables taken two at a time
1.e. jomt partial entropies. ,
For example H (x,, x,) for Fig. 2 is obtained as follows. First p (x1, xj) or
P (Xq, Xp):
P (X, X} =p(l,0) =2/3
p(0,1) =1/3 (13)
all others zero.
P (X3, Xg) =p (0, —1)=1/3
p(0,1) =1/3 (14)
all others zero.
P(x:X)=p(l, —1) =1/3
p(l,1) =1/3
p (0, —1)=1/3 (15)
all others zero.
Then we calculate:
H {x,, x,) = 0.918 (16)
H (x,, %) = H (x,, x3) = 1.585

We now form the following table for our sound pattern:

H(x,) \ H(x,) | H(xy) |H(x,,xo)

H(x,, x,) j H(x,, x4) |

IH (xls xﬂs XB}
1 n

| | |
| 05283 | 0918 | 0918 | 0918 | 0018 | L85 | L1585
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The hypothesis which we formulate is that stability of a structure 18
reflected in stationary values of these entropies (either minimnm or maximum
values). If & language uses one vowel or even none, all the entropies are zero
and this represents a stable structure. However, if a language uses more than
one vowel, it scems natural to expect that the entropies reaching large values
represent stable structures since such a tendency tends to eliminate redundancy.

Thus, one must gradually begin to congider other effects, for a more adequate
study of stability.

Nevertheless, on the basis of the above primitive model comparisons of
languages as regards their stability can indeed be made, even though they
arve rather superficial. But when they are made, all other effects are really
assumed equally likely (zero order entropies). Of two languages, for instance,
with the same number of vowels and features, the one with the higher entropies

must be the more stable.
6. Higher order entropies

Here, account is taken of varying vowel frequencies, in computing en-
tropies. Let us assume that the vowels have probabilities, i.e. we have a random

variable called v (vowel) with,

p (v)=2/3
p (v5)=1/6 (17)
p (vy)=1/6
The total vowel entropy is:
H 21 i 2l : 18)
= (3 e HB) (

To find now all the feature entropies (say first-order type) we simply have
to recalculate the p.df’s based on these values.
To find p (X, X3, X5) We use:
P (Xy, Xz, 13}22 P (X1, Xa, Xy (V) D (V)

In this case, it trivially becomaos:
p(1,0, —)=1-p(v)) =23
p(1,0,1)=1-p (v,) = 1/8
p(0,1, —1)=1-p(v) =1/6
and the total entropy per feature is:

]
3|
Next we compute p (x;), p (X2}, p (%), First p (X}

P (D)=p (1/v))'p (v) +P (1/75) P (vo) +P (1/vs) P (V)=

2 1 5

o2 11-[-01— 3
S g 6 3 6 6
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B Gy =T+ L The total entropy of Greek (logarithm to the base 2) is:
6 6 H (vowel}) = —[0.268 In 0.2684-0.06 In 0.06+40.2053 1n(0.2053) -+
p(—1)=0. + 0.191 In(0,191) +90.2751 1n 0.2751]

Likewise we compute all the others. = 2.179

The entropy per feature is then:
7. Latin and Modern Greek

H (x4, X5, X3) '

As an application we shall consider the two languages Greek and Latin, ‘ = 7293
Since both use the same number of vowels it would be interesting to compare '
them. Furthermore since we have data on the frequency of the vowels for Next, the entropies of each feature i.e. (H xy}, H (x,), H (x;), are compnuted.
both, we shall compute the entropies which take vowel frequency into account. We first need p (x,) using, of course, the vowel frequencies.

(1) Greek: p(1) =0.268+0.2751 = 5431

Greek uses five vowels i, e, a, 0, u. Rename them v,, v, v, v, v5. The p (11)=[P 9y =0
p.m.f. of these vowels estimated on the basis of the relative frequency interpre- Pt SR Ehas o DI NS0 bEn
tation of probability is as follows: Thus, the entropy for the first feature f, is:

p(v)=0.268  p{vy,)=0.06 p (v4)=0.2033 H (x,})=—0.6431 {In 543—In 1000)—0.4569 (In 457 —In 1000)
p (v)=01016 and p (v;)=0.2751 — 0,543 (9.96—9.08)--0.4569 (9.96—8.84)

0.4784-0.512 = 0.990

The stochastic process of interest is given below. The features diffuse,
compact and grave are denoted by f,, f,, {,.

i e a o0 u Next feature f,:
diffuse | + — — — -+ p(l) =0.2053=0.2053
0 0 P(Xz]:{
o

compact = B p(0) =0.268+ .2751=0.5431
e _ _ 0 4 p(—1)=0.06+0.1916=0.2516

Fig. 3. Distinctive feature matrix for Modern Gresk and Latin Thus, H (x,)= 0.2053 {(In 1000—In 205)4-0.5¢31 (In 1000—In 543) 4
+ 0.2516 (In 1000—In 252)
= 0.468+0.478 +0.498

1 * 1 2 3 f
. g, 0 B ‘ H (x,)==1.444 |
Finally feature f,:

fT - diffuse

1 p (1) == 0.1916-0.2751 = .4667
LI L R et D (x5)=p (0) = 0.2053 = 0.2053
D (—1)= 0.268+0.06 = 0.328

t,— grave

. ) H (x,)= .4667 (9.96—In 468)+0.20563 (9.96—In 205) +0.328 (9.96—In 328)

o a.. B g : B %

g ! —=0.561+0.468-1-0.625=1.503

| H =1.603 | -
v a,, (D . { | H (x,) |
=31 r Final table for Greek:

Vs q () -I[; ‘_J_g__‘_»-f H (xla Xga, xﬂ)

W = H (x,) H (x,) H (x,)

Fig. 4. Stochastic process for the voecalie system of fig. 3 I 0.7293 0.890 | 1.444 | 1.503
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(2) Latin:

Latin has presumably the same stochastic phonological process as concerns
realizations, but different probability distribution. The vowel p.m.f’s are
(from Table VIII}?

P (vy) = 0.2527
p (vg) = 0.1499
p (vy) = 0.2719
P vy = 0.1232
P (vs) = 0.2023

H (x;, X,, X,)= 0.2527 (9.96—In 253)=0.502
+0.145 (9.96—In 150)=0.396
+0.2719 {9.96—In 271)=0.508
+0.1232 (9.96—In 123)=0.372
40.2023 (9.96—In 202)=0.465

2,243

Thus total entropy is:

a value slightly higher than Greek.

Next feature f;:
p (1) = 0.25274-0.2023 = .4550
P(X)=1p(0) =0
P (—1)= 0.1499 4-0.271940.1232 — 5450

H (x,)= 0.455 (9.96—8.83)=0.455 (1.13)=0.514
+0.545 (9.96—9.09)=0.545 (0.87)=0.474

088

| H (x;)=0.988 |

Feature {,:
p (1) 0.2719 = 0.2719
p (x2}={9 (0) = 0.252740.2023 = 0.4550
p(—1)= 0.149910.1232 = 0.2731

H (x,)= 0.2719 (9.96—8.09) = 0.509
+(0.4550) (9.96—8.83) = 0.514
+ 0.2731 (9.96—8.09) = 0.510

1.533

|

|

- H (x)=1533 |

* Krdmsky (1968,
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Feature f:
p(l} =0.3255
p{x)=(p(0) =0.2719
p(—1) = 0.4026

H (x,) = 0.3255 (9.96—8.35) = 0.524
+0.2719 (9.96—8.09) = 0.509
10.4026 (9.96—8.65) = 0.527

1.560

| H (x,)=1.560 '

Final table for Latin:

H (x4, X3, X3) :
8 |
0.747 ! 0988 | 1.533

H (x,) H (xy) H (x,)

|
_!
|
\ 1.560

8. Conclusion

The reaults are inconclusive, as Latin displayed consistently higher entropies,
therefore, lower redundancy, therefore according to our assumption higher
stability.

Perhaps, as has been often assumed, average value for Entropy is the most
stable, ag it incorporates aspects of both speaker and listener.

But linguistic diachrony does not proceed in a sociolinguistic vacuum.
It is most likely that the particular pattern of prosodic features (stress and
length) made Latin vowels more unstable, but also that the sociolinguistic
gituation (wide-spread bilingualism, often only incipient or subordinate)
would have required higher systematic redundancy.

A more final answer will have to wait. However with as rigorous and flexible
a model, solutions to different problems can be actively, and successfully
gought, and long standing riddles in diachronic phonology finally answered
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