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Speech evaluation in Motor disorders can have a prominent role in obtaining valuable pieces of information on the disturbances to the neuro muscular mechanisms 
affecting the speech production by providing objective measures. Many researchers have verified the efficiency of speech assessment as a promising tool providing 
prognosis markers to discriminate healthy and pathological patterns (Meilán et al., 2014; Ash & Grossman, 2015; Poole et al., 2017). From another perspective, 
advances of technology in computer sciences have added a new dimension to the processing of impaired speech leading to capture broad cues of the speech 
disorders. More specifically, the development of various speech processing technologies has paved the way to examine diverse methods of automatic assessment of 
the symptoms as well as the severity of speech impairments. Speech classification systems as an embodiment of speech technologies involve the automatic 
classification of input audio signals and prioritization of the most relevant signals. The feature extraction, as an important stage of developing a classification system, 
primarily focuses on the extraction of wide range of acoustic features which can grasp the existing variabilities in pathological speech patterns or sources. At this 
stage, the acoustic based methods adopting machine-learning approaches automatically extract a large number of measurement features and subsequently the 
models are learned from the large sets of data resulting in an automatic speech classification system. Despite having several advantages, one of the most crucial 
drawbacks of such methodology using to multi-parameter models is it prevents the possibility to gain explicit knowledge on the most relevant acoustic parameters. 
With high dimensionality of feature vectors, the recognition of the relevant and irrelevant features becomes more challenging and consequently some irrelevant 
features containing less useful information may bring errors into the classification system. As not all features contribute positively to the performance of a classifier, 
it becomes of great importance to remove the source of error. A direct solution to the above-mentioned issues caused by high feature dimensionality can be 
reducing the dimensionality of feature vectors.

Introduction

The present study aims at scrutinizing the strength of
acoustic analysis for the objective assessment of dysarthria.

More specifically, the focus of the current study lies on the
reduction of the feature space of multi-parameter models
and search for an optimal subset of acoustic parameters
from very large number of acoustic features derived
automatically from dysarthric speech.

It is hypothesized that the reduced parameter set will
maintain efficient predictive power to automatically detect
the severity of dysarthria by means of linear statistics and
predict the response variable which is the Frenchay (FDA)
severity score.

Objectives

The corpus used in this research was the Nemours Database of Dysarthric Speech
consisting of the speech data of 11 American male speakers with varying degrees
of dysarthria each producing 74 short nonsense sentences with restricted
vocabulary containing 4 to 6 words. The score from the Frenchay Dysarthria
Assessment (Enderby, 1983) for each participant is included in the database. The
feature set for the 2012 Interspeech Speaker Trait Challenge (Schuller et al. 2012)
from openSMILE toolkit (Eyben et al. 2013) was used for the extraction of acoustic
features containing a total of 6125 features derived from 64 energy-, spectrum-
and voicing-related “low-level descriptors” (LLD).

A preselection of the features was carried out at the very first stage of the process.
The acoustic features were categorized into separate groups based on sharing
statistical functionals applied to LLDs in which the features with the functionals
arising from the same or similar sources were included into the same group. Then,
the Akaike information criterion (IAC) was calculated for each of the members
within the group and one or two features with the lowest Akaike information
criterion (AIC) were retained from every group.

The stepwise selection was performed on the group of retrained features to find
the best combination of the features. The stepwise algorithm produced a
predictive model of the Frenchay assessment scores with the smallest AIC=
2811.19 and the combination of the 238 survived variables. Finally, multiple
regression analysis was used to validate the effectiveness of the model as a good
fit and the results of the multiple regression analysis revealed the linear model is
significant F(238,501)=183.5, p<0.001) with the R2=0.9833 showing that 98% of
the variance in the data can be explained by the constructed linear model.

Methodology

The acoustic survived features selected by the stepwise regression in the final model were

classified according to their LLD groups which are presented in the table A. Furthermore,

the functions applied to the features were also categorized on the basis of the belonging

group and their occurrence size (table. B). The results revealed that the most occurring

feature was audSpec_Rfilt_sma. (RASTA-style filtered auditory spectrum) from the energy

related LLD. Another main feature appearing 49 times in the model was

pcm_fftMag_mfcc_sma. (MFCC 1-14) which was a member of spectral group. The acoustic

feature audspec_lengthL1norm_sma_ (Sum of auditory spectrum) from the energy related

group and the feature pcm_fftMag_spectralRollOff 0.Number (Spectral Roll Off Point 0.25,

0.50, 0.75, 0.90) from the group of spectral LLD each had appeared 10 times in the final

model. The occurrence size of other features in the model was less than 10 times.

Two example boxplots of acoustic features involved in the generated significant linear

model can be observed in Figures 1 and 2. where the features are close to the top of the

candidate ranking. As clear in all the figures, the scores of the Frenchay assessment (right

x-axis) are overlaid across many subject-specific boxplot distributions of the feature values

(left y-axis). Another finding noticeable in all figures is the relation between the relative

variations in the severity of the disorder and the feature value distributions which is in line

with the work of Werner (2018) recognizing that many relative severity differences are

represented in the distributions of the acoustic feature values.

Results

The overall findings revealed a trend supporting the hypothesis that acoustic measures are
potentially usable for predicting the dysarthria severity. The stepwise regression analyses of a
high dimensional feature set containing the features ranked on the basis of smallest AICs yielded
the results which verify the efficiency of the utilized statistical procedure as an alternative
solution for the problem of high dimensionality in feature set. Subjecting parameters of the
reduced features sets into linear multiple regression analyses confirmed the significance of the
model for predicting the Frenchay severity scores.Notwithstanding, construction of an automatic
evaluation of pathological speech is a very complex task and much more research is needed to
get insights into objective acoustic correlates of dysarthria. Also, in spite of the fact that reduced
set of parameters were capable of predicting the severity scores of the dysarthria, relying
exclusively on individual variables will not generate a highly reliable automatic assessment. Thus,
for having a set of acoustic features with full predictive power, it is also of a great importance to
seek for feasible procedures to inspect the interaction between acoustic parameters.

Conclusion

4 energy related LLD 

Sum of auditory spectrum (loudness) 

Sum of RASTA-style filtered auditory spectrum 

RMS Energy 

Zero-Crossing Rate 

54 spectral LLD 

RASTA-style auditory spectrum, bands 1-26 (0–8 kHz) 

MFCC 1–14 

Spectral energy 250–650 Hz, 1 k–4 kHz 

Spectral Roll Off Point 0.25, 0.50, 0.75, 0.90 

Spectral Flux, Entropy, Variance, Skewness, Kurtosis, Slope, 

Psychoacoustic Sharpness, Harmonicity 

6 voicing related LLD 

F0 by SHS + Viterbi smoothing, Probability of voicing 

logarithmic HNR, Jitter (local, delta), Shimmer (local) 

2. Subject-specific boxplots of feature variable 

‘pcm_fftMag_mfcc_sma_de.1._rqmean”

1. Subject-specific boxplots of the feature variable 

‘audspec_lengthL1norm_sma_upleveltime25’. 

Black lines represent the subjects' total Frenchay 

scores across all ranges of feature values.

Methodology

Functionals applied to LLD / Δ LLD 

quartiles 1–3, 3 inter-quartile ranges 

1 % percentile (≈ min), 99 % percentile (≈ max) 

position of min / max 

percentile range 1 %–99 % 

arithmetic mean, root quadratic mean 

contour centroid, flatness 

standard deviation, skewness, kurtosis 

rel. duration LLD is above / below 25 / 50 / 75 / 90% range 

rel. duration LLD is rising / falling 

rel. duration LLD has positive / negative curvature

gain of linear prediction (LP), LP Coefficients 1–5 

mean, max, min, std. dev. of segment length 

Functionals applied to LLD only 

mean of peak distances 

standard deviation of peak distances 

mean value of peaks 

mean value of peaks – arithmetic mean 

mean / std.dev. of rising / falling slopes 

mean / std.dev. of inter maxima distances 

amplitude mean of maxima / minima 

amplitude range of maxima 

linear regression slope, offset, quadratic error 

quadratic regression a, b, offset, quadratic error 

percentage of non-zero frames

64provided Low-level descriptors ‘LLD’ 

(Schuller et al. 2012). 

Applied functionals (Schuller et al. 2012). 

Energy related LLD Size

Sum of auditory spectrum (loudness) 10

Sum of RASTA-style filtered auditory spectrum 92

RMS Energy 5

Zero-Crossing Rate 7

Spectral LLD

RASTA-style auditory spectrum, bands 1-26 5

MFCC 1–14 49

Spectral energy 250–650 Hz 1

Spectral energy 1 k–4 kHz 5

Spectral Roll Off Point 0.25, 0.50, 0.75, 0.90 10

Spectral Flux, Entropy 11(5+6)

Spectral Variance 5

Spectral Skewness and Kurtosis 8(4+4)

Spectral Slope 5

Spectral Harmonicity 4

Spectral Sharpness (Psychoacoustic) 6

Voicing related LLD 

F0 by SHS + Viterbi smoothing 4

Jitter (local, delta) 3(2+1)

Shimmer (local) 5

Probability of voicing logarithmic HNR 2

Group Feature Size

Range, iqr1.2, iqr1.3,

63
1

quartile1, quartile2, quartile3, 

percentile1.0, percentile99.0,

pctlrange0.1, stddev, kurtosis

2
minSegLen, maxSegLen, 

30
meanSegLen

upleveltime25, upleveltime50,

283 upleveltime90,

risetime, falltime

4 lpgain, lpc3 34

5
amean, flatness, 

29
rqmean, posamean

6

meanPeakDist, peakDistStddev, 

20
peakRangeAbs, peakMeanAbs,

peakMeanRel, minRangeRel,

peakMeanMeanDist,

7
meanRisingSlope, 

15
stddevFallingSlope

8 linregc2, linregerrQ 14

9 qregerrQ 13

A. Classification of the main features involved 

in the optimal mode. 

B. Classification of the main feature functions 

involved in the optimal mode. 


