

ADAM MICKIEWICZ UNIVERSITY IN POZNAŃ

Faculty of English

Speech perception in young multilinguals

Marta Marecka^{1,3}, Magdalena Wrembel¹, Romana Kopečková² & Ulrike Gut²

> ¹Adam Mickiewicz University, ²University of Münster, ³Jagiellonian University

> > L3 workshop 2017

Speech perception in multilinguals

- Models of L2 speech perception
- Overview of research
- Study
 - Aims
 - Methods
 - Results
 - Conclusion

Models of L2 speech perception

- Perceptual Assimilation Model (PAM, PAM-L2)
 Best 1995, Best & Tyler 2007
- L2 sounds may be assimilated into L1 phonological space => as good/acceptable/deviant exemplars of
 - L1 category
- Different assimilation patterns:
 - TC 2 L2 phones to two different L1 categories
 - CG 2 L2 phones to one L1 category (but one is better exemplar)
 - SC 2 L2 phones to one L1 category (equally good/bad exemplars)
 - UC uncategorised assimilation

Speech perception by multilinguals?

- PAM does not make any predictions
- Are L3/Ln categories assimilated to L1 or L2 categories in multilinguals?
- Will phonological categories from multiple languages help distinguish between two similar L3/Ln categories?

Overview of previous L3 perception studies (1)

- Studies on L3 perception rather scarce
- Kopečková 2013, 2015
 - cross-linguistic vowel identification task
 - child participants
 - Polish: L1, English: L2 or L3
 - basic mechanism of equivalence classification for both L2 and L3 learners
 - gradual change in perceptual sensitivity

Overview of previous L3 perception studies (2)

Cabrelli Amaro 2013, 2016

- word-final vowel reduction in L3 BP and L2 Spanish
- naturalness preference task
- Phonological Permeability Hypothesis not supported
- Onishi 2016
 - perception of Japanese contrasts by L3 and L2 learners
 - L1 Korean/L2 English/L3 Japanese vs. L1 English/L2 Japanese
 - AXB discrimination task
 - increase in perceptual sensitivity with L2 phonological acquisition (claimed multilingual advantage)

Multilingual advantage for perception

- Multilinguals deal better with cross-linguistic interference (Bartolotti & Marian 2012)
- Advantage for perception of novel contrasts
 (e.g. Antoniou et al., 2015; Enomoto, 1994; Tremblay & Sabourin, 2012)
- No difference between monolinguals and bilinguals acquiring novel contrasts
 (e.g. Díaz, 2011; Gabriel et al., 2014; Patihis et al., 2015)
- Conflicting outcomes possibly due to differences in:
 - cross-linguistic similarity,
 - bilingual dominance and proficiency,
 - specific vs. global advantage

Previous related research

- Kopečková, Marecka, Wrembel, Gut, 2016, IJM "Interactions between three phonological subsystems of young multilinguals: the influence of language status"
 - **Vowel production** in L3 Polish by child participants
 - L1: German, L2: English
 - Heritage speakers vs. foreign language learners
 - Complex patterns, individual variation

Aims of the study

- To investigate perceptual categorisation of L3 sounds
- To trace possible facilitation effect of multilingualism
- To explore differences in the vowel and sibilant inventories of the three languages tested

German	English	Polish
14 vowels /i-ɪ/, /u-ʊ/	12 vowels /i-ɪ/, /u-ʊ/	6 vowels no vowel length distinction
/s z∫t͡j t͡s/	/s z∫3 t͡∫ d͡ʒ/	s z ۵ z ۶ z ۲ (ts dz ts dz ts dz/

Research questions

- RQ1: Do L3 speakers distinguish L3 vowels and sibilants?
- RQ2: Are L3/Ln vowels and sibilants assimilated to L1 or L2 categories?
- Hypotheses:
- H1: Problems distinguishing L3 Polish sibilants (not occurring in L1 German or L2 English)
- H2: No problem distinguishing L3 Polish vowels (L1 and L2 being vocalic)

- 10 participants growing up in Berlin (9 for the vowel perception)
- 5 male, 5 female (4 male in the vowel perception task)
- aged 14
- enrolled in Polish classes for 10 months
- L2: English, L3/Ln: French or Latin
- 3 German speakers (grew up as monolinguals)
- 7 heritage speakers (at least one Polish parent, grew up with two or more home languages)

Research design (1)

Perceptual task 1: vowels

Cross-linguistic categorical discrimination

(cf. Fox, Flege and Munro 1995, Cebrian 2015)

- indicate (dis)similarity on 7-point Likert scale
- minimal pairs within L3 and across other languages:

• L3 – L3, L3 – L1, L3 – L2

- vowels: 6 Polish, 9 English, 9 German
- 55 trials in 2 blocks, randomised
- bVt context, e.g.

L3 Polish	L2 English	L1 German
byt	bit	Bitt
	beat	Bütt

Research design (2)

- Perceptual task 2: sibilants
- AX discrimination task
 - tokens presented auditorily in monosyllable /Xan/
 - 4 sibilant pairs selected

/san/ - /san/ /t͡san/ - /t͡san/ /zan/ - /ʑan/ /d͡zan/ - /d͡ʑan/

- ISI: 300 ms
- (4 same pairs + 4 different) x 2 repetitions = 16 trials
- in random order
- reaction time (RT) task in E-prime

Results: vowel perception (1)

- 2 x 4 ANOVA (group x type of vowel comparison)
- Group: German vs. heritage speakers
- Type:

Polish & Polish vowels (same) Polish & Polish vowels (different) Polish & English vowels Polish & German vowels

- Significant effect of vowel comparison type
 F(3,21) = 26.14, p <.001, eta squared = 0.59
- No effect of group, no interaction between group and vowel comparison

Results: vowel perception (2)

- Polish vs Polish vowels
 (same): M = 1.59, SD = 0.50
- Polish vs English vowels:
 M = 2.73, *SD* = 0.65
- Polish vs German vowels:
 M = 2.80, *SD* = 0.68
- Polish vs Polish vowels (different):

M = 4.22, SD = 1.26

Results: vowel perception (3)

Polish vs Polish vowels (same)

< Polish vs Polish vowels (different)

(*t*(8)= -7.66, *p*<.001, *d* = -2.55)

Big differences M = 4.22 on PL vs PL (different) vs M = 1.59 on PL vs PL (same) **BUT** greater variability on PL vs PL (different) (SD = 1.26)

Results: vowel perception (4)

Polish same < Polish vs English</p>

(*t*(8)= -4.64, *p*<.05, *d* = -1.55)

but

Polish different > Polish vs English

(*t*(8)= 4.38, *p*<.05, *d* = 1.46).

Polish same < Polish vs German</p>

(t(8) = -4.86, p < .01, d = -1.61).

but

Polish different > Polish vs German

(*t*(8)= 4.18, *p*<.05, *d* = 1.39)

Results: vowel perception (5)

- Polish vs English < Polish vs German (t(8)= 5.53, p<.01, d = 1.84)</p>
- English vowels were consistently rated as more similar to Polish than German vowels BUT the actual difference between German and English is very small: Polish vs English vowels: *M* = 2.73, *SD* = 0.65 Polish vs German vowels: M = 2.80, SD = 0.68

Results: individual vowels

Results: sibilants

- perception of different sibilant pairs highly accurate
- discrimination accuracy:
 ż-ź (92.50%) > dż-dź (85.00%) > sz-ś (81.25%) > cz-ć (73.75%)
- difference between cz-ć & ż-ź statistically significant (Mann-Whitney U test with Bonferroni corrections, p < 0.01)
- RT: no statistically significant differences sz-ś (M = 157.23 ms, SD = 347.23) > cz-ć (M = 242.75 ms, SD = 454.11) > dż-dź (M = 285.00 ms, SD = 399.39) > ż-ź (M = 413.77 ms, SD = 1298.73).
- no effect of group, no interaction between group and sibilant type

Results: individual differences

d'score (across sibilant types)

mean distances (vowel types)

HeritPol07	1.277		Dellahun	Dellahan		
GerMono10	1.552		Polish vs Polish	Polish vs Polish	Polish vs	Polish vs
GerMono05	1.622		(same)	(different)	German	English
HeritPol06	1.887	German monolingual1	1.67	3.00	2.14	2.08
GerMono09	2.229	German monolingual2	1.50	4.33	3.31	3.29
HeritPol01	2.229	German monolingual3	1.33	5.67	3.10	3.05
HeritPol03	2 229	Heritage speaker 1	2.50	6.00	2.60	2.53
	2.223	Heritage speaker 2	1.83	3.67	3.34	3.23
HeritPol04	2.367	Heritage speaker 3	1.17	4.33	3.55	3.43
HeritPol02	2.73	Heritage speaker 4	1.00	2.33	1.49	1.47
HeritPol08	4.645	Heritage speaker 5	2.17	5.33	3.23	3.13
		Heritage speaker 6	1.17	3.33	2.44	2.38

•NB. excellent discrimination >3.0, lack of discrimination <1.0.

Discussion: vowel perception (1)

- Different Polish vowel types perceived as highly distinct (although greater SD than for other comparisons)
- Different tokens of the same Polish vowel perceived as the same
- English and German 'equivalents' perceived as similar but not the same as Polish vowels

=> developed categorical perception for Polish vowels

• German vowels perceived as less similar to Polish than English, but the difference is small

=> possibly L2 effect

Discussion: vowel perception (2)

- No group effect heritage speakers not different from the German learners of Polish (but v. small group)
- Categorical perception different for different vowel types:
 - Polish and English bet or bot perceived as very similar
 - Polish bit and English beat also perceived as similar
 - Polish but and German buht perceived as very dissimilar

Discussion: sibilant perception

 Different Polish sibilant pairs perceived with high discrimination accuracy => task effects?

(short ISI, tapping auditory sensory ability rather than categorization processing?)

- The highest the accuracy of sibilant discrimination the lowest the reaction time
- No group effect heritage speakers not different from the German speakers (but v. small groups)

Discussion: vowel and sibilant perception

- Results partly contradict PAM's prediction that two similar sounds in the target language and nonexistent in the L1 should be assimilated to this L1 category
- In general the L3 child learners clearly distinguished between the tested Polish vowels and sibilants, respectively, and did not seem to assimilate them to L1 categories
- More assimilation to L2 than L1 vowel categories (although the difference is very small)

Conclusions

- RQ 1: Do L3 speakers distinguish L3 Polish vowels and sibilants?
 - YES
- RQ 2: Are L3/Ln vowels and sibilants assimilated to L1 or L2 categories?
 - Rather to L2
- Hypothesis 1: Problems distinguishing L3 Polish sibilants
 NO
- Hypothesis 2: No problem distinguishing L3 Polish vowels
 YES

Future work

- Longitudinal study to trace development in L3 perception
- Both cross-linguistic dissimilation and identification tasks
- Mirror groups
 - L3 Pol/L2 Eng/L1 Ger vs.
 - L3 Ger/L2 Eng/L1 Pol

THANK YOU

References (1)

- Antoniou, M., Liang, E., Ettlinger, M., & Wong, P. (2015). The bilingual advantage in phonetic learning. *Bilingualism: Language and Cognition, 18*, 683-695.
- Bartolotti, J., & Marian, V. (2012). Language learning and control in monolinguals and bilinguals. *Cognitive Science, 36*, 1129–1147
- Best, C. T. (1995). A Direct Realist View of Cross-Language Speech Perception. In W. Strange (Ed.), Speech Perception and Linguistic Experience (pp. 171–204). Timonium: New York Press. 28
- Best, C. T., & Tyler, M. D. (2008). Nonnative and second-language speech perception: Commonalities and complementarities. In O.-S. Bohn & M. J. Munro (Eds.), Language Experience in Second Language Speech Learning (pp. 13–34). Amsterdam: John Benjamins Publishing Company.
- Cabrelli Amaro, J. (2013). *The Phonological Permeability Hypothesis: Measuring regressive L3 influence to test L2 phonological representations.* Unpublished doctoral dissertation, University of Florida.
- Cabrelli Amaro, J. (2016). Testing the Phonological Permeability Hypothesis: L3 phonological effects on L1 versus L2 systems. *International Journal of Bilingualism*. Advance online publication. doi: 0.1177/1367006916637287.

References (2)

- Cebrian, J. (2015). Reciprocal measures of perceived similarity. In The Scottish Consortium for ICPhS 2015 (Ed.), Proceedings of the 18th International Congress of Phonetic Sciences. Glasgow, UK: the University of Glasgow. Paper number 1041.1-9 retrieved from http://www.icphs2015.info/pdfs/Papers/ICPHS0892.pdf
- Díaz, M. (2011). L2 and L3 acquisition of the Portuguese stressed vowel inventory by native speakers of English. Unpublished doctoral dissertation, University of Arizona.
- Enomoto, K. (1994). L2 perceptual acquisition: The effect of multilingual linguistic experience on the perception of a "less novel" contrast. *Edinburgh Working Papers in Applied Linguistics, 5*, 15–29
- Fox, R. A., Flege, J. E., & Munro, M. J. (1995). The perception of English and Spanish vowels by native English and Spanish listeners: A multidimensional scaling analysis. The Journal of the Acoustical Society of America, 97(4), 2540–255.
- Gabriel, C., Thulke, J., Kupisch, T. (2014). Production and perception of nonnative accent in French as a foreign language: Multilingual learners with Mandarin Chinese as a heritage language. Paper presented at SLE 2014 Workshop on Advances in the Investigation of L3 Phonological Acquisition, Poznań, Poland.

References (3)

- Kopečková, R. (2013). Cross-linguistic influence in child L3 instructed phonological acquisition. In L. Aronin & M. Pawlak (Eds.) *Essential topics in applied linguistics and multilingualism. Studies in honor of David Singleton* (pp. 205–224). Heidelberg/New York: Springer.
- Kopečková, R. (2015). Differences in the perception of English vowel sounds by child L2 and L3 learners. In U. Gut, R. Fuchs & E.-M. Wunder (Eds.), Universal or diverse paths to English phonology (pp. 71–90). Berlin: Mouton de Gruyter.
- Kopečková, R., Marecka, M., Wrembel, M., & Gut, U. (2016). Interactions between three phonological subsystems of young multilinguals: The influence of language status. *International Journal of Multilingualism*, 13 (4), 426-443.
- Onishi, H. (2016). The effect of L2 experience on L3 perception. International Journal of Multilingualism, 13(4), 459-475.
- Patihis, L., Oh, J. S., & Mogilner, T. (2015). Phoneme discrimination of an unrelated language: Evidence for a narrow transfer but not a broad-based bilingual advantage. *The International Journal of Bilingualism*, 19(1), 3–16.
- Tremblay, M.-C., & Sabourin, L. (2012). Comparing behavioral discrimination and learning abilities in monolinguals, bilinguals and multilinguals. *Journal of the Acoustical Society of America*, 132, 3465–3474.

Perception task 1 - stimuli

GERMAN L1	ENGLISH L2	POLISH L3
Bett	bet	bet
	bat	
Bad	bat	bat
	but	
Biet	beat	bit
Bitt	bit	
Bütt		
Bitt	bit	byt
Bütt	beat	
Buht	boot	but
Butt	book/t	
Bott	bott	bot
Boot	bouaht	

